Optimization Theory and Algorithm Lecture 7 - 10/08/2021

Lecture 7

Lecturer: Haishan Ye Scribe: Haishan Ye

Edited by: Junbo Hao

1 Simplex Method for Linear Programming

- 1. Fundamental Theorem of Linear Programming
- 2. Simplex Method

Recall the standard form of linear programming:

$$
\min_{\mathbf{x}} \mathbf{c}^{\top} \mathbf{x},
$$

s.t. $A\mathbf{x} = \mathbf{b},$
 $\mathbf{x} \succeq 0,$

where $A \in \mathbb{R}^{m \times n}$ with $m \leq n$ is of full row rank, **c** and **x** are *n*-dimension vector.

Theorem 1.1. *A linear programming whose feasible domain is not not empty. Then its optimum is either unbounded or attained at least one vertex of the feasible domain.*

Definition 1.2. Feasible domain: $P = \{x \in \{n | Ax = b, x \ge 0\}.$

Definition 1.3. Hyperplane: $a^{\top}x = \beta$, with $a, x \in^{n \times 1}$. Closed Half space: $a^{\top}x \leqslant \beta$. Polyhedral: Intersection of a finite number of closed half space. Polytope: Bounded polyhedral.

Note that the feasible domain *P* of the linear programming is a polyhedral because $a_i^{\top}x = b_i$ is the intersection of $a_i^{\top} x \geq b_i$ and $a_i^{\top} x \leq b_i$ and $x_i \geq 0$ is a closed half space.

Furthermore, *P* is convex since closed half space is convex and the intersection still reserves the convexity.

Definition 1.4. Extreme point of *P* is the point that can not be expressed by the convex combination of other points.

Theorem 1.5. *P is convex polyhedral and* $x \in P$ *is a vertex if and only if* x *is a extreme point of* P.

Theorem 1.6. $x \in P$ *is a extreme point of P if and only if columns of A with respect to positive* x_i *are linearly independent.*

Proof. Denote that

$$
\mathbf{x} = \begin{bmatrix} \bar{\mathbf{x}} \\ 0 \end{bmatrix} \text{ with } \bar{\mathbf{x}} = \begin{bmatrix} x_1 \\ \vdots \\ x_p \end{bmatrix} > 0, \text{ and } \bar{A} = [A_1, \dots, A_p].
$$
 (1)

It is easy to check that $A\mathbf{x} = \overline{A}\overline{\mathbf{x}} = \mathbf{b}$.

Proof by contradiction. Assume that **x** is an extreme point but \bar{A} is linearly dependent. Since \bar{A} is linearly dependent, there exist a $\bar{w} \neq 0$ such that $\bar{A}w = 0$. Therefore, there exist a small number ϵ such that $\bar{\mathbf{x}} \pm \epsilon \bar{\mathbf{w}} \ge 0$ and $\bar{A}(\bar{\mathbf{x}} \pm \epsilon \bar{\mathbf{w}}) = \bar{A}\bar{\mathbf{x}} = \mathbf{b}$. Letting

$$
\mathbf{y}_1 = \begin{bmatrix} \bar{\mathbf{x}} + \epsilon \bar{\mathbf{w}} \\ 0 \end{bmatrix}, \text{ and } \mathbf{y}_2 = \begin{bmatrix} \bar{\mathbf{x}} - \epsilon \bar{\mathbf{w}} \\ 0 \end{bmatrix}.
$$

It is easy to check that $x = \frac{y_1 + y_2}{2}$ and $y_1, y_2 \in P$. That is x can be expressed by the convex combination of y_1 and **y**2, which contradicts with the fact that **x** is an extreme point of *P*.

Now we assume that \bar{A} is linearly independent but **x** is not an extreme point of P . Then we can represent **x** as

$$
\mathbf{x} = \lambda \mathbf{y}_1 + (1 - \lambda) \mathbf{y}_2, \ \mathbf{y}_1 \neq \mathbf{y}_2 \ \lambda \in (0, 1), \ \mathbf{y}_1, \mathbf{y}_2 \geq 0.
$$

By the form of **x** shown in Eqn. [\(1\)](#page-1-0), it holds that

$$
\mathbf{y}_1 = \begin{bmatrix} \bar{\mathbf{y}}_1 \\ 0 \end{bmatrix} . \tag{2}
$$

Now,

$$
\mathbf{x} - \mathbf{y}_1 = \lambda \mathbf{y}_1 + (1 - \lambda) \mathbf{y}_2 - \mathbf{y}_1 = -(1 - \lambda) (\mathbf{y}_1 - \mathbf{y}_2) \neq 0
$$
 (3)

where the last inequality is because $y_1 \neq y_2$ and $\lambda < 1$. Therefore

$$
A(\mathbf{x}-\mathbf{y}_1)=\bar{A}(\bar{\mathbf{x}}-\bar{\mathbf{y}}_1)=\mathbf{b}-\mathbf{b}=0,
$$

which contradicts the assumption *A* is linearly independent.

Managing extreme points algebraically Let *A* be an $m \times n$ matrix with, we say *A* has full rank (full row rank) if *A* has *m* linearly independent columns. In this, we can rearrange

$$
\mathbf{x} = \begin{bmatrix} \mathbf{x}_B \\ \mathbf{x}_N \end{bmatrix} \leftarrow \text{basic variables} \quad A = \underbrace{\begin{bmatrix} B & N \\ \text{Basis non-basis} \end{bmatrix}}_{\text{Basis non-basis}}.
$$
 (4)

Definition 1.7. If we set x_N to zero and x_B is the solution of $Bx_B = b$, then we say x is a basic solution. If $x_B \ge 0$, then **x** is a basic feasible solution.

Proposition 1.8. *A point* **x** *in P is an extreme point of P if and only if* **x** *is a basic feasible solution corresponding to some basis B.*

Proposition 1.9. *The polyhedron P has only a finite number of extreme points.*

Definition 1.10. A vector **d** is an extremal direction of *P*, if $\{x \in \infty \mid x = x^0 + \lambda d, \lambda > 0\} \subset P$ for all $x^0 \in P$.

Theorem 1.11 (Resolution Theorem). Let $V = \{v^i \in \{i | i \in I\} \}$ be the set of all extreme point of P and I is a finite *index set. Then* $\forall x \in P$ *, we have*

$$
\mathbf{x} = \sum_{i \in I} \lambda_i v^i + \lambda \mathbf{d},\tag{5}
$$

where

$$
\sum_i \lambda_i = 1, \lambda_i \geqslant 0,
$$

and either $\mathbf{d} = 0$ *or* \mathbf{d} *is a extreme direction.*

Theorem 1.12. *For a standard form LP, if its feasible domain P is nonempty, then the optimal objective value of* $z = \mathbf{c}^\top \mathbf{x}$ over P is either unbounded below, or it is attained at (at least) an extreme point of P.

Proof. By the resolution theorem, there are two cases:

Case 1, *P* has an extreme direction **d** such that $c^{\top}d < 0$. Then *P* is unbounded and $z \to -\infty$.

Case2, *P* does not have an extreme direction **d** such that $c^{\top}d < 0$. Then $\forall x \in P$, either $x = \sum_i \lambda_i v^i$ or $\mathbf{x} = \sum_i \lambda_i v^i + \mathbf{\bar{d}}$ with $\mathbf{c}^\top \mathbf{\bar{d}} \geqslant 0$.

In both cases, it holds that

$$
\mathbf{c}^{\top}\mathbf{x} = \mathbf{c}^{\top} \left(\sum_{i} \lambda_{i} v^{i}\right) + \mathbf{c}^{\top} \mathbf{d}
$$

$$
\geqslant \sum_{i} \lambda_{i} (\mathbf{c}^{\top} v^{i})
$$

$$
\geqslant \min_{i} \mathbf{c}^{\top} v^{i}
$$

$$
= \mathbf{c}^{\top} v^{\min}
$$

Simplex Method Fundamental Matrix

$$
M = \begin{bmatrix} B & N \\ 0 & I \end{bmatrix} \text{ and } M^{-1} = \begin{bmatrix} B^{-1} & -B^{-1}N \\ 0 & I \end{bmatrix} \tag{6}
$$

It is easy to check that

$$
M\mathbf{x} = \begin{bmatrix} B & N \\ 0 & I \end{bmatrix} \begin{bmatrix} \mathbf{x}_B \\ \mathbf{x}_N \end{bmatrix} = \begin{bmatrix} \mathbf{b} \\ 0 \end{bmatrix} \tag{7}
$$

$$
\mathbf{x}(\lambda) = \mathbf{x} + \lambda \mathbf{d}_q,\tag{8}
$$

with

$$
\mathbf{d}_q = \begin{bmatrix} -B^{-1}A_q \\ \vdots \\ e_q \end{bmatrix} \tag{9}
$$

Feasibility of **d***q*? *Yes*! By

$$
A\mathbf{x}(\lambda) = A(\mathbf{x} + \lambda \mathbf{d}_q) = A\mathbf{x} + [B, N] \begin{bmatrix} -B^{-1}N_q \\ e_q \end{bmatrix} = A\mathbf{x} = \mathbf{b}.
$$
 (10)

Definition 1.13 (reduced cost). The quantity of $r_q = \mathbf{c}^\top \mathbf{d}_q = \mathbf{c}_q - \mathbf{c}_B^\top B^{-1} A_q$ is called a reduced cost with respect to the variable x_q .

Theorem 1.14. If $x = [B^{-1}b; 0]$ is a basic feasible solution with B and $r_q < 0$, for some non-basic variable x_q , then **d***^q* = [−*B* [−]1*Aq*;*eq*] *leads to an improved objective function.*

Theorem 1.15. *If* **x** *is a basic feasible solution with* $r_q \geq 0$ *for all non-basic variables, then* **x** *is optimal solution.*

Proof. **x** is local optimum. Since linear programming is a convex optimization problem, the local optimum is the global one.

How to choose step size λ Case 1: **d**_{*q*} \geq 0, for all λ $>$ 0.

 $\text{Case 2: One } \mathbf{d}_q < 0, \lambda = \min_i \left\{ \frac{\mathbf{x}_i}{-\mathbf{d}_{q_i}} \mid \mathbf{d}_{q_i} < 0 \right\}$