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1 Simplex Method for Linear Programming

1. Fundamental Theorem of Linear Programming

2. Simplex Method

Recall the standard form of linear programming:

min
x

c>x,

s.t. Ax = b,

x � 0,

where A ∈m×n with m 6 n is of full row rank, c and x are n-dimension vector.

Theorem 1.1. A linear programming whose feasible domain is not not empty. Then its optimum is either unbounded

or attained at least one vertex of the feasible domain.

Definition 1.2. Feasible domain: P = {x ∈n| Ax = b, x > 0}.

Definition 1.3. Hyperplane: a>x = β, with a, x ∈n×1. Closed Half space: a>x 6 β. Polyhedral: Intersection

of a finite number of closed half space. Polytope: Bounded polyhedral.

Note that the feasible domain P of the linear programming is a polyhedral because a>i x = bi is the intersection

of a>i x > bi and a>i x 6 bi and xi > 0 is a closed half space.

Furthermore, P is convex since closed half space is convex and the intersection still reserves the convexity.

Definition 1.4. Extreme point of P is the point that can not be expressed by the convex combination of other

points.

Theorem 1.5. P is convex polyhedral and x ∈ P is a vertex if and only if x is a extreme point of P.

Theorem 1.6. x ∈ P is a extreme point of P if and only if columns of A with respect to positive xi are linearly

independent.
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Proof. Denote that

x =

x̄

0

 with x̄ =


x1
...

xp

 > 0, and Ā = [A1, . . . , Ap]. (1)

It is easy to check that Ax = Āx̄ = b.

Proof by contradiction. Assume that x is an extreme point but Ā is linearly dependent. Since Ā is linearly

dependent, there exist a w̄ 6= 0 such that Āw = 0. Therefore, there exist a small number ε such that

x̄± εw̄ > 0 and Ā(x̄± εw̄) = Āx̄ = b. Letting

y1 =

x̄ + εw̄

0

 , and y2 =

x̄− εw̄

0

 .

It is easy to check that x = y1+y2
2 and y1, y2 ∈ P. That is x can be expressed by the convex combination of y1

and y2, which contradicts with the fact that x is an extreme point of P.

Now we assume that Ā is linearly independent but x is not an extreme point of P. Then we can represent x

as

x = λy1 + (1− λ)y2, y1 6= y2 λ ∈ (0, 1), y1, y2 > 0.

By the form of x shown in Eqn. (1), it holds that

y1 =

ȳ1

0

 . (2)

Now,

x− y1 = λy1 + (1− λ)y2 − y1 = −(1− λ)(y1 − y2) 6= 0 (3)

where the last inequality is because y1 6= y2 and λ < 1. Therefore

A(x− y1) = Ā(x̄− ȳ1) = b− b = 0,

which contradicts the assumption A is linearly independent. �

Managing extreme points algebraically Let A be an m× n matrix with, we say A has full rank (full row

rank) if A has m linearly independent columns. In this, we can rearrange

x =

xB

xN

 ← basic variables

← non-basic variables
A = [ B︸︷︷︸

Basis

, N︸︷︷︸
non-basis

]. (4)

Definition 1.7. If we set xN to zero and xB is the solution of BxB = b, then we say x is a basic solution. If

xB > 0, then x is a basic feasible solution.
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Proposition 1.8. A point x in P is an extreme point of P if and only if x is a basic feasible solution corresponding to

some basis B.

Proposition 1.9. The polyhedron P has only a finite number of extreme points.

Definition 1.10. A vector d is an extremal direction of P, if {x ∈n| x = x0 + λd, λ > 0} ⊂ P for all x0 ∈ P.

Theorem 1.11 (Resolution Theorem). Let V =
{

vi ∈n| i ∈ I
}

be the set of all extreme point of P and I is a finite

index set. Then ∀x ∈ P, we have

x = ∑
i∈I

λivi + λd, (5)

where

∑
i

λi = 1, λi > 0,

and either d = 0 or d is a extreme direction.

Theorem 1.12. For a standard form LP, if its feasible domain P is nonempty, then the optimal objective value of

z = c>x over P is either unbounded below, or it is attained at (at least) an extreme point of P.

Proof. By the resolution theorem, there are two cases:

Case 1, P has an extreme direction d such that c>d < 0. Then P is unbounded and z→ −∞.

Case2, P does not have an extreme direction d such that c>d < 0. Then ∀x ∈ P, either x = ∑i λivi or

x = ∑i λivi + d̄ with c>d̄ > 0.

In both cases, it holds that

c>x =c>
(

∑
i

λivi

)
+ c>d̄

>∑
i

λi(c>vi)

>min
i

c>vi

=c>vmin

�

Simplex Method Fundamental Matrix

M =

B N

0 I

 and M−1 =

B−1 −B−1N

0 I

 (6)
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It is easy to check that

Mx =

B N

0 I

xB

xN

 =

b

0

 (7)

x(λ) = x + λdq, (8)

with

dq =


−B−1 Aq

...

eq

 (9)

Feasibility of dq? Yes! By

Ax(λ) = A(x + λdq) = Ax + [B, N]

−B−1Nq

eq

 = Ax = b. (10)

Definition 1.13 (reduced cost). The quantity of rq = c>dq = cq − c>B B−1 Aq is called a reduced cost with

respect to the variable xq.

Theorem 1.14. If x = [B−1b; 0] is a basic feasible solution with B and rq < 0, for some non-basic variable xq, then

dq = [−B−1 Aq; eq] leads to an improved objective function.

Theorem 1.15. If x is a basic feasible solution with rq > 0 for all non-basic variables, then x is optimal solution.

Proof. x is local optimum. Since linear programming is a convex optimization problem, the local optimum is

the global one. �

How to choose step size λ Case 1: dq > 0, for all λ > 0.

Case 2: One dq < 0, λ = mini

{
xi
−dqi

| dqi < 0
}
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