Optimization Theory and Algorithm

Lecture 7 - 10/08/2021

Lecture 7

Lecturer: Haishan Ye

Scribe: Haishan Ye

Edited by: Junbo Hao

1 Simplex Method for Linear Programming

- 1. Fundamental Theorem of Linear Programming
- 2. Simplex Method

Recall the standard form of linear programming:

$$\min_{\mathbf{x}} \mathbf{c}^{\top} \mathbf{x},$$
s.t. $A\mathbf{x} = \mathbf{b}$
 $\mathbf{x} \succeq \mathbf{0},$

where $A \in m \times n$ with $m \leq n$ is of full row rank, **c** and **x** are *n*-dimension vector.

Theorem 1.1. *A linear programming whose feasible domain is not not empty. Then its optimum is either unbounded or attained at least one vertex of the feasible domain.*

Definition 1.2. Feasible domain: $P = \{ \mathbf{x} \in {}^n | A\mathbf{x} = \mathbf{b}, \mathbf{x} \ge 0 \}.$

Definition 1.3. Hyperplane: $a^{\top}x = \beta$, with $a, x \in {}^{n \times 1}$. Closed Half space: $a^{\top}x \leq \beta$. Polyhedral: Intersection of a finite number of closed half space. Polytope: Bounded polyhedral.

Note that the feasible domain *P* of the linear programming is a polyhedral because $a_i^{\top} x = b_i$ is the intersection of $a_i^{\top} x \ge b_i$ and $a_i^{\top} x \le b_i$ and $x_i \ge 0$ is a closed half space.

Furthermore, *P* is convex since closed half space is convex and the intersection still reserves the convexity.

Definition 1.4. Extreme point of *P* is the point that can not be expressed by the convex combination of other points.

Theorem 1.5. *P* is convex polyhedral and $x \in P$ is a vertex if and only if x is a extreme point of P.

Theorem 1.6. $x \in P$ is a extreme point of P if and only if columns of A with respect to positive x_i are linearly *independent.*

Proof. Denote that

$$\mathbf{x} = \begin{bmatrix} \bar{\mathbf{x}} \\ 0 \end{bmatrix} \text{ with } \bar{\mathbf{x}} = \begin{bmatrix} x_1 \\ \vdots \\ x_p \end{bmatrix} > 0, \text{ and } \bar{A} = [A_1, \dots, A_p].$$
(1)

It is easy to check that $A\mathbf{x} = \overline{A}\overline{\mathbf{x}} = \mathbf{b}$.

Proof by contradiction. Assume that **x** is an extreme point but \bar{A} is linearly dependent. Since \bar{A} is linearly dependent, there exist a $\bar{\mathbf{w}} \neq 0$ such that $\bar{A}\mathbf{w} = 0$. Therefore, there exist a small number ϵ such that $\bar{\mathbf{x}} \pm \epsilon \bar{\mathbf{w}} \ge 0$ and $\bar{A}(\bar{\mathbf{x}} \pm \epsilon \bar{\mathbf{w}}) = \bar{A}\bar{\mathbf{x}} = \mathbf{b}$. Letting

$$\mathbf{y}_1 = \begin{bmatrix} \bar{\mathbf{x}} + \epsilon \bar{\mathbf{w}} \\ 0 \end{bmatrix}$$
, and $\mathbf{y}_2 = \begin{bmatrix} \bar{\mathbf{x}} - \epsilon \bar{\mathbf{w}} \\ 0 \end{bmatrix}$.

It is easy to check that $\mathbf{x} = \frac{\mathbf{y}_1 + \mathbf{y}_2}{2}$ and $y_1, y_2 \in P$. That is \mathbf{x} can be expressed by the convex combination of \mathbf{y}_1 and \mathbf{y}_2 , which contradicts with the fact that \mathbf{x} is an extreme point of P.

Now we assume that \overline{A} is linearly independent but **x** is not an extreme point of *P*. Then we can represent **x** as

$$\mathbf{x} = \lambda \mathbf{y}_1 + (1 - \lambda) \mathbf{y}_2, \ \mathbf{y}_1 \neq \mathbf{y}_2 \ \lambda \in (0, 1), \ \mathbf{y}_1, \mathbf{y}_2 \ge 0.$$

By the form of x shown in Eqn. (1), it holds that

$$\mathbf{y}_1 = \begin{bmatrix} \bar{\mathbf{y}}_1 \\ 0 \end{bmatrix}. \tag{2}$$

Now,

$$\mathbf{x} - \mathbf{y}_1 = \lambda \mathbf{y}_1 + (1 - \lambda)\mathbf{y}_2 - \mathbf{y}_1 = -(1 - \lambda)(\mathbf{y}_1 - \mathbf{y}_2) \neq 0$$
(3)

where the last inequality is because $\mathbf{y}_1 \neq \mathbf{y}_2$ and $\lambda < 1$. Therefore

$$A(\mathbf{x} - \mathbf{y}_1) = \bar{A}(\bar{\mathbf{x}} - \bar{\mathbf{y}}_1) = \mathbf{b} - \mathbf{b} = 0,$$

which contradicts the assumption A is linearly independent.

Managing extreme points algebraically Let *A* be an $m \times n$ matrix with, we say *A* has full rank (full row rank) if *A* has *m* linearly independent columns. In this, we can rearrange

$$\mathbf{x} = \begin{bmatrix} \mathbf{x}_B \\ \mathbf{x}_N \end{bmatrix} \quad \begin{array}{l} \leftarrow \text{ basic variables} \\ \leftarrow \text{ non-basic variables} \end{bmatrix} A = \begin{bmatrix} B \\ Basis \\ \text{non-basis} \end{bmatrix} A \quad (4)$$

Definition 1.7. If we set \mathbf{x}_N to zero and \mathbf{x}_B is the solution of $B\mathbf{x}_B = b$, then we say \mathbf{x} is a basic solution. If $\mathbf{x}_B \ge 0$, then \mathbf{x} is a basic feasible solution.

Proposition 1.8. A point \mathbf{x} in P is an extreme point of P if and only if \mathbf{x} is a basic feasible solution corresponding to some basis B.

Proposition 1.9. *The polyhedron P has only a finite number of extreme points.*

Definition 1.10. A vector **d** is an extremal direction of *P*, if $\{\mathbf{x} \in {}^n | \mathbf{x} = \mathbf{x}^0 + \lambda \mathbf{d}, \lambda > 0\} \subset P$ for all $\mathbf{x}^0 \in P$.

Theorem 1.11 (Resolution Theorem). Let $V = \{v^i \in I\}$ be the set of all extreme point of P and I is a finite index set. Then $\forall \mathbf{x} \in P$, we have

$$\mathbf{x} = \sum_{i \in I} \lambda_i v^i + \lambda \mathbf{d},\tag{5}$$

where

$$\sum_i \lambda_i = 1, \lambda_i \geqslant 0,$$

and either $\mathbf{d} = 0$ or \mathbf{d} is a extreme direction.

Theorem 1.12. For a standard form LP, if its feasible domain P is nonempty, then the optimal objective value of $z = \mathbf{c}^{\top} \mathbf{x}$ over P is either unbounded below, or it is attained at (at least) an extreme point of P.

Proof. By the resolution theorem, there are two cases:

Case 1, *P* has an extreme direction **d** such that $\mathbf{c}^{\top}\mathbf{d} < 0$. Then *P* is unbounded and $z \to -\infty$.

Case2, *P* does not have an extreme direction **d** such that $\mathbf{c}^{\top}\mathbf{d} < 0$. Then $\forall \mathbf{x} \in P$, either $\mathbf{x} = \sum_{i} \lambda_{i} v^{i}$ or $\mathbf{x} = \sum_{i} \lambda_{i} v^{i} + \bar{\mathbf{d}}$ with $\mathbf{c}^{\top} \bar{\mathbf{d}} \ge 0$.

In both cases, it holds that

$$\mathbf{c}^{\top}\mathbf{x} = \mathbf{c}^{\top} \left(\sum_{i} \lambda_{i} v^{i}\right) + \mathbf{c}^{\top} \mathbf{\bar{d}}$$
$$\geqslant \sum_{i} \lambda_{i} (\mathbf{c}^{\top} v^{i})$$
$$\geqslant \min_{i} \mathbf{c}^{\top} v^{i}$$
$$= \mathbf{c}^{\top} v^{\min}$$

	-	

Simplex Method Fundamental Matrix

$$M = \begin{bmatrix} B & N \\ 0 & I \end{bmatrix} \text{ and } M^{-1} = \begin{bmatrix} B^{-1} & -B^{-1}N \\ 0 & I \end{bmatrix}$$
(6)

It is easy to check that

$$M\mathbf{x} = \begin{bmatrix} B & N \\ 0 & I \end{bmatrix} \begin{bmatrix} \mathbf{x}_B \\ \mathbf{x}_N \end{bmatrix} = \begin{bmatrix} \mathbf{b} \\ 0 \end{bmatrix}$$
(7)

$$\mathbf{x}(\lambda) = \mathbf{x} + \lambda \mathbf{d}_q,\tag{8}$$

with

$$\mathbf{d}_{q} = \begin{bmatrix} -B^{-1}A_{q} \\ \vdots \\ e_{q} \end{bmatrix}$$
(9)

Feasibility of \mathbf{d}_q ? Yes! By

$$A\mathbf{x}(\lambda) = A(\mathbf{x} + \lambda \mathbf{d}_q) = A\mathbf{x} + [B, N] \begin{bmatrix} -B^{-1}N_q \\ e_q \end{bmatrix} = A\mathbf{x} = \mathbf{b}.$$
 (10)

Definition 1.13 (reduced cost). The quantity of $r_q = \mathbf{c}^\top \mathbf{d}_q = \mathbf{c}_q - \mathbf{c}_B^\top B^{-1} A_q$ is called a reduced cost with respect to the variable \mathbf{x}_q .

Theorem 1.14. If $\mathbf{x} = [B^{-1}b; 0]$ is a basic feasible solution with B and $r_q < 0$, for some non-basic variable x_q , then $\mathbf{d}_q = [-B^{-1}A_q; e_q]$ leads to an improved objective function.

Theorem 1.15. If **x** is a basic feasible solution with $r_q \ge 0$ for all non-basic variables, then **x** is optimal solution.

Proof. **x** is local optimum. Since linear programming is a convex optimization problem, the local optimum is the global one.

How to choose step size λ Case 1: $\mathbf{d}_q \ge 0$, for all $\lambda > 0$.

Case 2: One $\mathbf{d}_q < 0$, $\lambda = \min_i \left\{ \frac{\mathbf{x}_i}{-\mathbf{d}_{q_i}} \mid \mathbf{d}_{q_i} < 0 \right\}$